
ConstruCtion

w w w . e f y m a g . c o m92 •  mar ch 2008 •  electronics for you

 AkshAy MAthur 

Microcontroller-BAsed  
dc Motor speed controller 

sunil kumar

Fig. 1: Circuit of microcontroller-based DC motor speed controller 

DC motor speed controllers 
are very useful for control-
ling the motion of robotic 

and industrial automation systems. 
The controller presented here uses the 
pulse-width modulation (PWM) tech-
nique. The PWM wave for speed con-
trol is generated using Atmel AT89C52 
microcontroller. 

To control the speed of the DC mo-
tor, you need a variable-voltage DC 
power source. When the DC motor is 
switched on, it takes certain time to 
reach the full speed. As soon as the 

power supply is switched on, the DC 
motor starts gaining speed and if you 
switch off the power supply before it 
reaches the maximum rated speed, it 
starts to slow down. 

In case switching on and switching 
off are done in quick succession, the 
motor rotates at a slower speed be-
tween zero and full rated speed. This is  
what a PWM technique based control-
ler does: it switches the motor ‘on’ and 
‘off’ with a  pulse train. To control the 
motor speed, it varies (modulates) the 
width of the pulses—hence  the pulse-
width modulation. When the motor is 
‘on’ for a short period and ‘off’ for a 

long one, it will  rotate slowly. When 
the motor is ‘on’ for most of the time 
and ‘off’ only for a short while, it will 
rotate at higher speed, say, nearly at 
full (maximum) rated  speed.

circuit description 
Fig. 1 shows the circuit of the DC mo-
tor speed controller. 230V AC mains 
is stepped down by transformer X1 to 
deliver secondary output of 9V, 500 
mA. The secondary output is rectified 
by a full-wave bridge rectifier compris-
ing diodes D1 through D4, filtered by 
capacitor C1 and regulated by IC 7806 

Parts List
Semiconductor: 
IC1 - 7806, 6V regulator
IC2 - AT89C52 microcontroller
T1 - TIP122 npn transistor
D1-D6 - 1N4007 rectifier diode
LED1 - 5mm light-emitting diode
DIS1 - LTS543 common-cathode  
  7-segment display

Resistors (all ¼-watt, ±5% carbon):
R1 - 330-ohm
R2 - 10-kilo-ohm
R3 - 1-kilo-ohm
R4-R11 - 220-ohm

Capacitors: 
C1 - 1000µF, 25V electrolytic
C2, C3 - 0.1µF ceramic disk
C4, C5 - 22pF ceramic disk
C6 - 10µF, 16V electrolytic

Miscellaneous: 
X1 - 230V AC primary to 9V,  
  500mA secondary  
  transformer
S1-S3 - Push-to-on switch
S4 - On/off switch
XTAL - 12MHz crystal
 - 6V DC motor 
CON1 - Connector for power  
  supply



ConstruCtion

w w w . e f y m a g . c o m94 •  mar ch 2008 •  electronics for you

(IC1). Capacitor C2 bypasses any rip-
ple present in the regulated output. 
LED1 acts as the power-‘on’ indicator. 
Resistor R1 limits the current passing 
through LED1. Diode D5 causes a volt-
age drop of 0.6V and, as a result, the 
final output of the circuit is approxi-
mately 5.4V.

IC AT89C52 (IC2) is a low-power, 
high-performance, 8-bit microcontrol-

Fig. 2: A single-side, actual-size PCB layout for microcontroller-
based DC motor speed controller 

Fig. 3: Component layout for the PCB 

ler with 8 kB of Flash 
programmable and eras-
able read-only memory 
(PEROM), 256 bytes of 
RAM, 32 input/output  
(I/O) lines, three 16-bit 
timers/counters, a six-
vector two-level interrupt 
architecture, a full-duplex 
serial port, on-chip oscil-
lator and clock circuitry. 
In addition, the AT89C52 
is designed with static 
logic for operation down 
to zero frequency and 
supports two software-
selectable power-saving 
modes. The idle mode 
stops the CPU while 
allowing the RAM, tim-
ers/counters, serial port 
and interrupt system to 
continue functioning. 
The power-down mode 
saves the RAM contents 
but freezes the oscillator, 
disabling all other chip 
functions until the next 
hardware reset is acti-
vated.

At the heart of the 
speed controller system is 
microcontroller AT89C52 
(IC2), which creates (us-
ing timer 0) pulses of 
varying width for pulse-
width modulation and 
controls the motor speed. 
To change the speed of 
the motor, switches S2 
and S3 are interfaced to 
interrupt the input to 
pins P3.2 and P3.3 of IC2, 
respectively.

Whenever any of 
switches S2 and S3 is 
pressed, an interrupt is 

generated, which changes the duty 
cycle of the pulse train. Switch S2 
interfaced to Interrupt-0 increases the 
duty cycle of the pulse waveform, 
whereas switch S3 interfaced to Inter-
rupt-1 decreases the duty cycle of the 
pulse waveform. Power-on reset for 
the microcontroller is achieved through 
capacitor C6 and resistor R2. Switch S1 
provides manual reset to the microcon-



ConstruCtion

w w w . e f y m a g . c o m96 •  mar ch 2008 •  electronics for you

TR0 = 0;
P1_1 = ~P1_1;
if(t_val==1)
{TH0 = TH0_off; TL0 = TL0_off;}
else 
{TH0 = TH0_on; TL0 = TL0_on;}
t_val = ~t_val;
TR0 = 1;
}
void decrease (void) interrupt 2
{
t_on = t_on - 10; 
if(t_on<0) {t_on = 0;} 
t_off = 100 - t_on;
count1 = t_on * 10; 
count2 = t_off * 10;
TH0_on = (65535-count1)/256;  
TL0_on = (65535-count1)%256;
TH0_off = (65535-count2)/256; 
TL0_off = (65535-count2)%256;
}
void main()

motor.c
#include <AT89x52.h>
int i=0; int t_on=0, t_off=100;
int k[]={63,06,91,79,102,109,125,07,12
7,111,128};
bit t_val=0;
unsigned int count1, count2, TH0_on, 
TH0_off, TL0_on, TL0_off;

void increase (void) interrupt 0
{
t_on = t_on + 10; 
if(t_on>100) {t_on = 100;} 
t_off = 100 - t_on;
count1 = t_on * 10; 
count2 = t_off * 10;
TH0_on = (65535-count1)/256;  
TL0_on = (65535-count1)%256;
TH0_off = (65535-count2)/256; 
TL0_off = (65535-count2)%256;
}
void pwm (void) interrupt 1
{

{
P1=1; 
IE = 135;
IP=5; 
TCON = 21; 
TMOD = 1;
count1 = t_on * 10; 
count2 = t_off * 10;
TH0_on = (65535-count1)/256;  
TL0_on = (65535-count1)%256;
TH0_off = (65535-count2)/256; 
TL0_off = (65535-count2)%256;
TH0 = TH0_on; 
TL0 = TL0_on;
TR0=1;
while(1)
{
P2 = k[t_on/10];
}
}    

troller. A 12MHz crystal (XTAL) is used 
for basic clock frequency. 

Port 2 is an 8-bit, bidirectional, 
input/output (I/O) port with internal 
pull-ups. Port-2 output buffers can 
sink/source four TTL inputs. The duty 
cycle of the pulse waveform is dis-
played on common-cathode 7-segment 
display LTS543 (DIS1).  Segments ‘a’ 
through ‘g’ and decimal ‘dp’ are con-
nected to port pins P2.0 through P2.6 
and P2.7 via current-limiting resistors 
R4 through R11, respectively.

DIS1 displays one-tenth value of 
the duty cycle. If duty cycle is 50 per 
cent, the value displayed on DIS1 is 5. 
If duty cycle is 100 per cent, the value 
displayed on DIS1 is decimal point ‘•’ 
only (as it is only a single-digit display 
system and ‘10’ is displayed as ‘•’). The 
software is written such that the duty 
cycle for PWM is increased in discrete 
intervals of ‘10’. Hence the speed of the 
DC motor is divided into eleven steps 
from 0 to 10.

Port pin P1.1 is internally pulled 
up. It is used as the output to control 
the motor with driver transistor T1. 
Whenever timer-0 overflows, the status 
of pin P1.1 is complemented and hence 
a square wave with appropriate duty 
cycle is generated. This pin is inter-
faced to power transistor TIP122 (T1), 
which is used to drive the motor. 

When the transistor is driven into 
saturation, current flows through the 
motor. When the transistor is cut off, 
the motor current keeps flowing be-
cause of the motor’s inductance. Diode 
D6 connected across the motor coil pre-
vents reverse current flow. A heat-sink 
is used with power transistor T1.

An actual-size, single-side PCB 
for the DC motor speed controller is 
shown in Fig. 2 and its component 
layout in Fig. 3.

software
The software is written in ‘C’ language 
and compiled using Keil C compiler, 

which generates Intel hex code for the 
microcontroller. The µVision3 inte-
grates all tools including the ‘C’ com-
piler, micro assembler, linker/locator 
and hex file generator.  The generated 
hex code is burnt into the micrcontrol-
ler using a suitable programmer. 

Whenever any switch is pressed, 
the duty cycle of PWM varies. The 
software then calculates the appropri-
ate values for TH0 and TL0 for ‘on’ 
and ‘off’ time of the output, which 
are copied in TH0 and TL0 on timer 
interrupts. 

In this circuit, we have used timer-
0 of the microcontroller for generating 
PWM pulses, which is clocked using 
a 12MHz crystal oscillator. The base 
frequency is kept constant at 1 kHz and 
the duty cycle of this wave is varied to 
change the analogue level at output pin 
P1.1 of the microcontroller.

EFY note. The source code and all 
the relevant files for this article are in-
cluded in this month’s EFY-CD. 


